• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Entropy Field Decomposition Based Outage Detection for Ultra-Dense Networks

    Thumbnail
    View/Open
    Entropy_Field_Decomposition_Based_Outage_Detection_for_Ultra-Dense_Networks.pdf (7.526Mb)
    Date
    2021
    Author
    Asghar, Ahmad
    Farooq, Hasan
    Qureshi, Haneya Naeem
    Abu-Dayya, Adnan
    Imran, Ali
    Metadata
    Show full item record
    Abstract
    Ambitious quality of experience expectations from 5G mobile cellular networks have spurred the research towards ultra-dense heterogeneous networks (UDHNs). However, due to coverage limitations of millimeter wave cells and lack of coverage data in UDHNs, discovering coverage lapses in such 5G networks may become a major challenge. Recently, numerous studies have explored machine learning-based techniques to detect coverage holes and cell outages in legacy networks. Majority of these techniques are susceptible to noise in the coverage data and only characterize outages in the spatial domain. Thus, the temporal impact of an outage, i.e., the duration of its presence remains unidentified. In this paper, for the first time, we present an outage detection solution that characterizes outages in both space and time while also being robust to noise in the coverage data. We do so by employing entropy field decomposition (EFD) which is a combination of information field theory and entropy spectrum pathways theory. We demonstrate that compared to other techniques such as independent component analysis and k-means clustering, EFD returns accurate detection results for outage detection even in the presence of heavy shadowing in received signal strength data which makes it ideal for practical implementation in emerging mobile cellular networks.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3056551
    http://hdl.handle.net/10576/60230
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video