عرض بسيط للتسجيلة

المؤلفPrithula, Johayra
المؤلفChowdhury, Muhammad E. H.
المؤلفKhan, Muhammad Salman
المؤلفAl-Ansari, Khalid
المؤلفZughaier, Susu M.
المؤلفIslam, Khandaker Reajul
المؤلفAlqahtani, Abdulrahman
تاريخ الإتاحة2024-10-28T10:44:15Z
تاريخ النشر2024
اسم المنشورRespiratory Research
المصدرScopus
الرقم المعياري الدولي للكتاب14659921
معرّف المصادر الموحدhttp://dx.doi.org/10.1186/s12931-024-02753-x
معرّف المصادر الموحدhttp://hdl.handle.net/10576/60649
الملخصThe growing concern of pediatric mortality demands heightened preparedness in clinical settings, especially within intensive care units (ICUs). As respiratory-related admissions account for a substantial portion of pediatric illnesses, there is a pressing need to predict ICU mortality in these cases. This study based on data from 1188 patients, addresses this imperative using machine learning techniques and investigating different class balancing methods for pediatric ICU mortality prediction. This study employs the publicly accessible "Paediatric Intensive Care database" to train, validate, and test a machine learning model for predicting pediatric patient mortality. Features were ranked using three machine learning feature selection techniques, namely Random Forest, Extra Trees, and XGBoost, resulting in the selection of 16 critical features from a total of 105 features. Ten machine learning models and ensemble techniques are used to make accurate mortality predictions. To tackle the inherent class imbalance in the dataset, we applied a unique data partitioning technique to enhance the model's alignment with the data distribution. The CatBoost machine learning model achieved an area under the curve (AUC) of 72.22%, while the stacking ensemble model yielded an AUC of 60.59% for mortality prediction. The proposed subdivision technique, on the other hand, provides a significant improvement in performance metrics, with an AUC of 85.2% and an accuracy of 89.32%. These findings emphasize the potential of machine learning in enhancing pediatric mortality prediction and inform strategies for improved ICU readiness.
راعي المشروعThis work was made possible by High Impact grant# QUHI-CENG-23/24-216 from Qatar University and is also supported via funding from Prince Sattam Bin Abdulaziz University project number (PSAU/2023/R/1445). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرBioMed Central Ltd
الموضوعEarly recognition
Machine learning
Mortality prediction
Pediatric ICU
Pediatric mortality
Respiratory diseases
العنوانImproved pediatric ICU mortality prediction for respiratory diseases: machine learning and data subdivision insights
النوعArticle
رقم العدد1
رقم المجلد25
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة