• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deletion of Transient Receptor Channel Vanilloid 4 Aggravates CaCl2-Induced Abdominal Aortic Aneurysm and Vascular Calcification: A Histological Study

    Thumbnail
    View/Open
    applsci-14-02566.pdf (11.04Mb)
    Date
    2024
    Author
    Al-Huseini, Isehaq
    Al-Ismaili, Maryam
    Boudaka, Ammar
    Sirasanagandla, Srinivasa R.
    Metadata
    Show full item record
    Abstract
    Vascular calcification is calcium deposition occurring in the wall of blood vessels, leading to mechanical stress and rupture due to a loss of elasticity and the hardening of the vessel wall. The role of the Transient Receptor Channel Vanilloid 4 (TRPV4), a Ca2+-permeable cation channel, in the progression of vascular calcification is poorly explored. In this study, we investigated the role of TRPV4 in vascular calcification and the development of abdominal aortic aneurysm (AAA). Experimental mice were randomly divided into four groups: wild-type (WT) sham operated group, WT CaCl2-induced aortic injury, TRPV4-KO sham operated group, and TRPV4-KO CaCl2-induced aortic injury. The TRPV4-knockout (TRPV4-KO) mice and wild-type (WT) mice were subjected to the CaCl2-induced abdominal aortic injury. In histopathological analysis, the aorta of the TRPV4-KO mice showed extensive calcification in the tunica media with a significant increase in the outer diameter (p < 0.0001), luminal area (p < 0.05), and internal circumference (p < 0.05) after CaCl2 injury when compared to WT mice. Additionally, the tunica media of the TRPV4-KO mice aorta showed extensive damage with apparent elongation and disruption of the elastic lamella. These results indicate a protective function of TRPV4 against vascular calcification and the progression of AAA after CaCl2 injury.
    DOI/handle
    http://dx.doi.org/10.3390/app14062566
    http://hdl.handle.net/10576/60656
    Collections
    • Medicine Research [‎1759‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video