• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Anticancer drug delivery: Investigating the impacts of viscosity on lipid-based formulations for pulmonary targeting

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0378517324008251-main.pdf (3.818Mb)
    Date
    2024
    Author
    Mathew Thevarkattil, Anila
    Yousaf, Sakib
    Houacine, Chahinez
    Khan, Wasiq
    Bnyan, Ruba
    Elhissi, Abdelbary
    Khan, Iftikhar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Pulmonary drug delivery via aerosolization is a non-intrusive method for achieving localized and systemic effects. The aim of this study was to establish the impact of viscosity as a novel aspect (i.e., low, medium and high) using various lipid-based formulations (including liposomes (F1-F3), transfersomes (F4-F6), micelles (F7-F9) and nanostructured lipid carriers (NLCs; F10-F12)) as well as to investigate their impact on in-vitro nebulization performance using Trans-resveratrol (TRES) as a model anticancer drug. Based on the physicochemical properties, micelles (F7-F9) elicited the smallest particle size (12–174 nm); additionally, all formulations tested exhibited high entrapment efficiency (>89 %). Through measurement using capillary viscometers, NLC formulations exhibited the highest viscosity (3.35–10.04 m2/sec). Upon using a rotational rheometer, formulations exhibited shear-thinning (non-Newtonian) behaviour. Air jet and vibrating mesh nebulizers were subsequently employed to assess nebulization performance using an in-vitro model. Higher viscosity formulations elicited a prolonged nebulization time. The vibrating mesh nebulizer exhibited significantly higher emitted dose (ED), fine particle fraction (FPF) and fine particle dose (FPD) (up to 97 %, 90 % and 64 µg). Moreover, the in-vitro release of TRES was higher at pH 5, demonstrating an alignment of the release profile with the Korsmeyer-Peppas model. Thus, formulations with higher viscosity paired with a vibrating mesh nebulizer were an ideal combination for delivering and targeting peripheral lungs.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijpharm.2024.124591
    http://hdl.handle.net/10576/61329
    Collections
    • Pharmacy Research [‎1426‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video