• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep reinforced learning-based inductively coupled DSTATCOM under load uncertainties

    Thumbnail
    عرض / فتح
    s00202-024-02446-0.pdf (2.703Mb)
    التاريخ
    2024-01-01
    المؤلف
    Mangaraj, M.
    Muyeen, S. M.
    Babu, B. Chitti
    Nizami, Tousif Khan
    Singh, Satyavir
    Chakravarty, Arghya
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Concerning the power quality issues in the power distribution network due to load uncertainties and improper impedance matching of the inductances, deep reinforced learning (DRL)-based inductively coupled DSTATCOM (IC-DSTATCOM) is proposed. First, by analyzing the impedance matching principle, the expression of source, load and filter current is derived with the help of inductive filtering transformer. And second, an individual DRL subnet structure is accumulated for each phase using mathematical equations to perform the better dynamic response. A 10-kVA, 230-V, 50-Hz prototype direct coupled distributed static compensator (DC-DSTATCOM) and IC-DSTATCOM experimental setup is buit to verify the experimental performance under uncertainties of loading. The IC-DSTATCOM is augmented better dynamic performance in terms of harmonics curtailment, improvement in power factor, load balancing, potential regulation, etc. The benchmark IEEE-519-2017, IEC-61727 and IEC-61000-1 grid code are used to evaluate the effectiveness of the simulation and experimental study.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85193497902&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s00202-024-02446-0
    http://hdl.handle.net/10576/62079
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video