• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and performance analysis of hybrid MPPT controllers for fuel cell fed DC-DC converter systems

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484723007692-main.pdf (3.051Mb)
    Date
    2023-05-21
    Author
    Shaik, Rafikiran
    Devadasu, G.
    Basha, C.H. Hussaian
    Tom, Pretty Mary
    V., Prashanth
    C., Dhanamjayulu
    Kumbhar, Abhishek
    Muyeen, S.M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Fuel cell-based power generation is the most utilized renewable energy source in the automotive industry because of its features clean energy, and less environmental pollution. The fuel cell output power is mainly depending on the operating temperature of the fuel cell. The fuel cell gives nonlinear voltage versus current characteristics. As a result, the extraction of maximum power from the fuel stack is very difficult. In order to extract the peak power from the fuel cell, a Maximum Power Point Tracking (MPPT) controller is used at various working temperature conditions of the fuel cell. The main contribution of this study is the introduction and comparative performance analysis of different hybrid MPPT controllers for selecting the optimum duty cycle for the fuel cell-fed boost converter system. The studied MPPT controllers are Adaptive Adjustable Step-based Perturb and Observe (AAS-P&O) controllers, Variable Step Value-Radial Basis Function Controller (VSV-RBFC), Adaptive Step Hill Climb (ASHC) based fuzzy technique, Variable P&O with Particle Swarm Optimization (VP&O-PSO), and Variable Step Grey Wolf Algorithm (VSGWA) based fuzzy logic controller. These hybrid MPPT controllers’ comparative performance analysis has been done in terms of tracking speed of MPP, oscillations across MPP, design complexity of controller, ability to handle fast changes of temperature values, and accuracy of MPP tracking. From the simulative performance results, it is identified that the VSGWA-based fuzzy controller gives superior performance when compared to the other controllers.
    URI
    https://www.sciencedirect.com/science/article/pii/S2352484723007692
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2023.05.030
    http://hdl.handle.net/10576/62129
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video