• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and performance analysis of hybrid MPPT controllers for fuel cell fed DC-DC converter systems

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2352484723007692-main.pdf (3.051Mb)
    التاريخ
    2023-05-21
    المؤلف
    Shaik, Rafikiran
    Devadasu, G.
    Basha, C.H. Hussaian
    Tom, Pretty Mary
    V., Prashanth
    C., Dhanamjayulu
    Kumbhar, Abhishek
    Muyeen, S.M.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Fuel cell-based power generation is the most utilized renewable energy source in the automotive industry because of its features clean energy, and less environmental pollution. The fuel cell output power is mainly depending on the operating temperature of the fuel cell. The fuel cell gives nonlinear voltage versus current characteristics. As a result, the extraction of maximum power from the fuel stack is very difficult. In order to extract the peak power from the fuel cell, a Maximum Power Point Tracking (MPPT) controller is used at various working temperature conditions of the fuel cell. The main contribution of this study is the introduction and comparative performance analysis of different hybrid MPPT controllers for selecting the optimum duty cycle for the fuel cell-fed boost converter system. The studied MPPT controllers are Adaptive Adjustable Step-based Perturb and Observe (AAS-P&O) controllers, Variable Step Value-Radial Basis Function Controller (VSV-RBFC), Adaptive Step Hill Climb (ASHC) based fuzzy technique, Variable P&O with Particle Swarm Optimization (VP&O-PSO), and Variable Step Grey Wolf Algorithm (VSGWA) based fuzzy logic controller. These hybrid MPPT controllers’ comparative performance analysis has been done in terms of tracking speed of MPP, oscillations across MPP, design complexity of controller, ability to handle fast changes of temperature values, and accuracy of MPP tracking. From the simulative performance results, it is identified that the VSGWA-based fuzzy controller gives superior performance when compared to the other controllers.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S2352484723007692
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2023.05.030
    http://hdl.handle.net/10576/62129
    المجموعات
    • الهندسة الكهربائية [‎2846‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video