عرض بسيط للتسجيلة

المؤلفMurugan, Deepak Kumar
المؤلفSaid, Zafar
المؤلفPanchal, Hitesh
المؤلفGupta, Naveen Kumar
المؤلفSubramani, Sekar
المؤلفKumar, Abhinav
المؤلفSadasivuni, Kishor Kumar
تاريخ الإتاحة2025-01-30T06:58:44Z
تاريخ النشر2023-12-01
اسم المنشورEnvironmental Challenges
المعرّفhttp://dx.doi.org/10.1016/j.envc.2023.100779
الاقتباسMurugan, D. K., Said, Z., Panchal, H., Gupta, N. K., Subramani, S., Kumar, A., & Sadasivuni, K. K. (2023). Machine learning approaches for real-time forecasting of solar still distillate output. Environmental Challenges, 13, 100779.‏
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85174639403&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62663
الملخصSolar stills provide a promising avenue for freshwater production in regions grappling with water scarcity, especially remote locales. However, their efficiency is often constrained by the variable climatic conditions. Conventional prediction methods fall short in consistently forecasting the yield, leaving a significant gap in optimizing solar still operations. Recognizing this, the introduction of machine learning becomes pivotal. With a robust predictive model, operators can avoid inefficiencies, inconsistent outputs, and sub-optimal resource utilization. The primary objective of this research is to determine the most suitable machine learning model tailored for predicting solar still output under specific environmental conditions. This research work assessed various machine learning models, including linear regression, decision trees, random forest, support vector machines, and multilayer perceptron. Evaluation metrics encompassed Mean Absolute Error (MAE), cross-validation, grid search, and randomized search techniques. Our results identified the Decision Tree model, registering a MAE of 5.43 and 5.74 through random and grid search methods, respectively, as the preeminent predictor for our dataset. This machine learning-centric methodology elevates the precision of solar still output predictions and paves the way for enhanced solar still designs and superior optimization of solar energy conversion mechanisms.
اللغةen
الناشرElsevier B.V.
الموضوعDecision tree modelling
Machine learning techniques
Predictive models
Productivity estimation
Solar still
العنوانMachine learning approaches for real-time forecasting of solar still distillate output
النوعArticle
رقم المجلد13
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة