• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A data-driven approach for fault diagnosis in multi-zone HVAC systems: Deep neural bilinear Koopman parity

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352710223013062-main.pdf (2.735Mb)
    Date
    2023
    Author
    Irani, Fatemeh Negar
    Bakhtiaridoust, Mohammadhosein
    Yadegar, Meysam
    Meskin, Nader
    Metadata
    Show full item record
    Abstract
    Sensor faults in heating, ventilation, and air conditioning (HVAC) systems are inevitable and result in significant energy waste. This paper presents an innovative data-driven approach for sensor fault detection and isolation in multi-zone HVAC systems. The proposed solution integrates bilinear Koopman model realization, deep learning, and bilinear parity-space. A deep neural network realizes a bilinear model, enabling bilinear parity-space sensor fault detection and isolation. This yields a reliable, accurate, and interpretable data-driven framework. The method requires no prior HVAC dynamics knowledge, relying solely on normal operation data. It diagnoses additive, multiplicative, and complete failure sensor faults while minimizing false alarms, even with severe faults. A four-zone HVAC system is simulated in TRNSYS as a case study to demonstrate the performance and efficacy of the proposed approach. The proposed bilinear deep Koopman model realization is utilized to develop a bilinear model for the four-zone HVAC system. The bilinear model is then used for designing the bilinear parity-space. Further, considering various failure scenarios, the proposed sensor fault detection and isolation framework demonstrates promising diagnosis performance. Finally, a comparison is conducted to showcase the advantages of the proposed method over earlier works based on PCA and neural networks.
    DOI/handle
    http://dx.doi.org/10.1016/j.jobe.2023.107127
    http://hdl.handle.net/10576/63132
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video