• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep reinforcement learning-based control of chemo-drug dose in cancer treatment

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    S0169260723005503.pdf (4.599Mb)
    التاريخ
    2024
    المؤلف
    Mashayekhi, Hoda
    Nazari, Mostafa
    Jafarinejad, Fatemeh
    Meskin, Nader
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Background and objective: Advancement in the treatment of cancer, as a leading cause of death worldwide, has promoted several research activities in various related fields. The development of effective treatment regimens with optimal drug dose administration using a mathematical modeling framework has received extensive research attention during the last decades. However, most of the control techniques presented for cancer chemotherapy are mainly model-based approaches. The available model-free techniques based on Reinforcement Learning (RL), commonly discretize the problem states and variables, which other than demanding expert supervision, cannot model the real-world conditions accurately. The more recent Deep Reinforcement Learning (DRL) methods, which enable modeling the problem in its original continuous space, are rarely applied in cancer chemotherapy. Methods: In this paper, we propose an effective and robust DRL-based, model-free method for the closed-loop control of cancer chemotherapy drug dosing. A nonlinear pharmacological cancer model is used for simulating the patient and capturing the cancer dynamics. In contrast to previous work, the state variables and control action are modeled in their original infinite spaces to avoid expert-guided discretization and provide a more realistic solution. The DRL network is trained to automatically adjust the drug dose based on the monitored states of the patient. The proposed method provides an adaptive control technique to respond to the special conditions and diagnosis measurements of different categories of patients. Results and conclusions: The performance of the proposed DRL-based controller is evaluated by numerical analysis of different diverse simulated patients. Comparison to the state-of-the-art RL-based method, which uses discretized state and action spaces, shows the superiority of the approach in the process and duration of cancer chemotherapy treatment. In the majority of the studied cases, the proposed model decreases the medication period and the total amount of administrated drug, while increasing the rate of reduction in tumor cells.
    DOI/handle
    http://dx.doi.org/10.1016/j.cmpb.2023.107884
    http://hdl.handle.net/10576/63135
    المجموعات
    • الهندسة الكهربائية [‎2823‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video