• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrative Stacking Machine Learning Model for Small Cell Lung Cancer Prediction Using Metabolomics Profiling

    Thumbnail
    View/Open
    cancers-16-04225.pdf (4.496Mb)
    Date
    2024
    Author
    Sumon, Md. Shaheenur Islam
    Malluhi, Marwan
    Anan, Noushin
    AbuHaweeleh, Mohannad Natheef
    Krzyslak, Hubert
    Vranic, Semir
    Chowdhury, Muhammad E. H.
    Pedersen, Shona
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Background: Small cell lung cancer (SCLC) is an extremely aggressive form of lung cancer, characterized by rapid progression and poor survival rates. Despite the importance of early diagnosis, the current diagnostic techniques are invasive and restricted. Methods: This study presents a novel stacking-based ensemble machine learning approach for classifying small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) using metabolomics data. The analysis included 191 SCLC cases, 173 NSCLC cases, and 97 healthy controls. Feature selection techniques identified significant metabolites, with positive ions proving more relevant. Results: For multi-class classification (control, SCLC, NSCLC), the stacking ensemble achieved 85.03% accuracy and 92.47 AUC using Support Vector Machine (SVM). Binary classification (SCLC vs. NSCLC) further improved performance, with ExtraTreesClassifier reaching 88.19% accuracy and 92.65 AUC. SHapley Additive exPlanations (SHAP) analysis revealed key metabolites like benzoic acid, DL-lactate, and L-arginine as significant predictors. Conclusions: The stacking ensemble approach effectively leverages multiple classifiers to enhance overall predictive performance. The proposed model effectively captures the complementary strengths of different classifiers, enhancing the detection of SCLC and NSCLC. This work accentuates the potential of combining metabolomics with advanced machine learning for non-invasive early lung cancer subtype detection, offering an alternative to conventional biopsy methods.
    DOI/handle
    http://dx.doi.org/10.3390/cancers16244225
    http://hdl.handle.net/10576/63408
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • Medicine Research [‎1739‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video