• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transforming polypropylene waste into transparent anti-corrosion weather-resistant and anti-bacterial superhydrophobic films

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0304389424001766-main.pdf (9.911Mb)
    Date
    2024-03-15
    Author
    Saleem, Junaid
    Moghal, Zubair Khalid Baig
    McKay, Gordon
    Metadata
    Show full item record
    Abstract
    The global pollution crisis arising from the accumulation of plastic in landfills and the environment necessitates addressing plastic waste issues. Notably, polypropylene (PP) waste accounts for 20% of total plastic waste and holds promise for hydrophobic applications in the realm of recycling. Herein, the transparent and non-transparent superhydrophobic films made from waste PP are reported. A hierarchical structure with protrusions is induced through spin-casting and thermally induced phase separation. The films had a water contact angle of 159° and could vary in thickness, strength, roughness, and hydrophobicity depending on end-user requirements. The Bode plot indicated enhanced corrosion resistance in the superhydrophobic films. Antibacterial trials with Escherichia coli and Staphylococcus aureus microbial solutions showed that the superhydrophobic film had a significantly lower rate of colony-forming units compared to both the transparent surface and the control blank sample. Moreover, a life cycle assessment revealed that the film production resulted in a 62% lower embodied energy and 34% lower carbon footprint compared to virgin PP pellets sourced from petroleum. These films exhibit distinctiveness with their dual functionality as coatings and freestanding films. Unlike conventional coatings that require chemical application onto the substrate, these films can be mechanically applied using adhesive tapes on a variety of surfaces. Overall, the effective recycling of waste PP into versatile superhydrophobic films not only reduces environmental impact but also paves the way for a more sustainable and eco-friendly future.
    URI
    https://www.sciencedirect.com/science/article/pii/S0304389424001766
    DOI/handle
    http://dx.doi.org/10.1016/j.jhazmat.2024.133597
    http://hdl.handle.net/10576/64322
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video