• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advancing steel protection with Ceria@Talc-8-hydroxyquinoline modified Polyurethane coatings

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0300944024002388-main.pdf (11.85Mb)
    Date
    2024-06-30
    Author
    Habib, Sehrish
    Qureshi, Ahmadyar
    Faisal, Muhammad
    Kahraman, Ramazan
    Ahmed, Elsadig Mahdi
    Shakoor, R.A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This research delves into a hybrid framework involving the synthesis of composite particles combining ceria-modified talc (CeO2@Talc) through a chemical precipitation method. The hybrid particles were then loaded with 8-Hydroxyquinoline (8-HQ) to serve as a corrosion inhibitor. The resulting CeO2@Talc-8HQ hybrid particles were subsequently incorporated into a polyurethane (PU) matrix and deposited on steel substrate to investigate and assess their barrier properties. The synthesized particles and developed coatings were characterized in detail utilizing various techniques. The Brunauer–Emmett–Teller (BET) results showed a decrease in the specific surface area and pore volume of modified particles as compared to that of pristine talc. These results demonstrated the successful loading and modification of the particles. The thermal gravimetric analysis (TGA) results showed excellent thermal behavior with only 2 % weight loss beyond 900 °C of the modified CeO2@Talc particles. The potentiodynamic polarization results represented 76.28 % increase in the corrosion inhibition efficiency in the presence of the modified particles. When these modified hybrid particles were reinforced (1.wt%) into the PU matrix, they exhibited an impressive impedance modulus of 56.14 GΩ.cm2 at 0.01 Hz, outperforming blank PU coatings which showed 0.002 GΩ.cm2 after four weeks of immersion in a 3.5 wt% saline solution. The incorporation of modified particles into the PU matrix results in significant improvements in various observed parameters such as the lowest break point frequency, damage index, and intersection frequency of the bode plot. These positive outcomes indicated that the modified coatings efficiently blocked the micropores of the PU matrix, preventing the diffusion of electrolytes into the coatings. Overall, this study not only introduced a novel structural design for superior corrosion mitigation but also demonstrated promising potential of corrosion protection for industrial applications.
    URI
    https://www.sciencedirect.com/science/article/pii/S0300944024002388
    DOI/handle
    http://dx.doi.org/10.1016/j.porgcoat.2024.108446
    http://hdl.handle.net/10576/64349
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Chemical Engineering [‎1194‎ items ]
    • Chemistry & Earth Sciences [‎601‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video