• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    LiMn2O4 – MXene nanocomposite cathode for high-performance lithium-ion batteries

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484724000830-main.pdf (9.887Mb)
    Date
    2024-06-30
    Author
    Ali, Muntaha Elsadig Siddig
    Tariq, Hanan Abdurehman
    Moossa, Buzaina
    Qureshi, Zawar Alam
    Kahraman, Ramazan
    Al-Qaradawi, Siham
    Shakoor, R.A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Lithium-ion batteries still face many significant challenges for practical applications, including low discharge capacity, cyclic efficiency, initial coulombic efficiency, areal performance, volumetric capacity, and high materials cost. LiMn2O4 (LMO) characterized by its spinel structure, is a highly appealing cathode material attributed to its remarkable energy density, cost-effectiveness, and minimal environmental impact. However, LMO experiences capacity fading while shifting between the C rates. The 2D material MXene with its very high electrical conductivity functions as a conductive matrix, allowing for volume expansion and contraction during Li+ intercalation while retaining structural and electrical connections. In this work, the LiMn2O4-MXene (LMO-MX) nanocomposite was synthesized by a cost-effective microwave-assisted chemical coprecipitation and examined. Structural characterization confirmed the effective synthesis of LMO-MX nanocomposite. Electrochemical characterizations demonstrate that LMO-MX nanocomposites exhibit outstanding electrochemical performance, with an initial specific discharge capacity of roughly 111 mAhg-1 at 0.1 C, and capacity retention of 95.2% after 100 cycles in contrast to the pristine LMO which gave an initial specific discharge capacity of 97 mAhg-1 and cyclability of 89.3%. The incorporation of MXenes enhances the electrochemical characteristics of LMO cathode material and implies that MXene-based nanocomposites might be useful as cathodes in high-performance lithium-ion batteries.
    URI
    https://www.sciencedirect.com/science/article/pii/S2352484724000830
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2024.02.006
    http://hdl.handle.net/10576/65364
    Collections
    • Center for Advanced Materials Research [‎1522‎ items ]
    • Chemical Engineering [‎1202‎ items ]
    • Chemistry & Earth Sciences [‎608‎ items ]
    • Materials Science & Technology [‎318‎ items ]
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video