عرض بسيط للتسجيلة

المؤلفMohammad, Syed
المؤلفChandrasekar, Vaisali
المؤلفAboumarzouk, Omar
المؤلفVikram Singh, Ajay
المؤلفPrasad Dakua, Sarada
تاريخ الإتاحة2025-06-16T07:13:21Z
تاريخ النشر2025
اسم المنشورIEEE Access
المعرّفhttp://dx.doi.org/10.1109/ACCESS.2025.3566440
الاقتباسShah, S. M., Chandrasekar, V., Aboumarzouk, O., Singh, A. V., & Dakua, S. P. (2025). Leveraging Machine and Deep Learning Algorithms for hERG Blocker Prediction. IEEE Access.
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105004329568&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/65560
الملخصThe human ether-a-go-go-related (hERG) gene is crucial in enabling the regulation of repolarisation process in the heart. Some chemicals act as hERG blockers, resulting in prolonged QT intervals. Predicting the binding capability of molecules with hERG channels is expected to reduce the burden of cardiotoxicity testing in drug evaluation. The application of machine learning (ML) and deep learning (DL) models in the field of toxicity has gained burgeoning interest. The current study utilises state-of-the-art ML and DL models for predicting the hERG-blocking ability of chemical compounds using a dataset of 8337 molecules. It is noted that spatial relationships within molecules are crucial in predicting hERG blockers. While the threshold for blockers is defined as ≤ 10 µM and for non-blockers, it is 10>μM, our analysis indicates that a threshold of 60- 80 µM provides a more accurate cut-off for non-blockers. This adjustment highlights the importance of concentration levels in reflecting the variability specific to individual interaction sites. The algorithm results show that the internal validation performance of RF, XGBoost, and MLP is strong, with AUC scores of 0.90, 0.90, and 0.87, respectively. In summary, the current study provides a machine learning framework for computation cardiotoxicity assessment by analysis of the hERG blocker concentration cut-offs using different fingerprints at multiple thresholds.
راعي المشروعThis work was supported in part by the Medical Research Center Project from Hamad Medical Corporation under Grant MRC-01-22-295, and in part by Qatar National Library.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc. (IEEE)
الموضوعcardiotoxicity
hERG
machine learning
prediction
العنوانLeveraging Machine and Deep Learning Algorithms for hERG Blocker Prediction
النوعArticle
رقم المجلد13
ESSN2169-3536
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة