• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Facile Approach to Develop Polyvinyl Alcohol-Based Bio-Triboelectric Nanogenerator Containing Graphene- Doped Zinc Oxide Quantum Dots

    Thumbnail
    View/Open
    Energy Tech - 2024 - Yempally - A Facile Approach to Develop Polyvinyl Alcohol‐Based Bio‐Triboelectric Nanogenerator.pdf (6.674Mb)
    Date
    2024
    Author
    Yempally, Swathi
    Cabibihan, John John
    Ponnamma, Deepalekshmi ()
    Metadata
    Show full item record
    Abstract
    This article presents an environmentally friendly, low-cost polymer nanocomposite, polyvinyl alcohol/sodium alginate-graphene-zinc oxide (PVA-SA/G-ZnO) based triboelectric nanogenerator by spin coating. ZnO quantum dots of average particle size <10 nm and the graphene oxide (GO)-doped ZnO are synthesized by co-precipitation following ageing. ZnO and G-ZnO particles are filled into the PVA/SA blend system using the solution mixing method. Spin-coated films of ≈1.2 μm and casted films of 120 μm thicknesses were used to prepare triboelectric nanogenerators (TENGs) to test the output voltage performances. Irrespective of the thickness values, the films gave similar voltage responses with contact electrification. This illustrates triboelectric power generation as a surface charge carrier phenomenon based on morphological analyses by scanning electron microscope (SEM) and atomic force microscopy (AFM). The maximum output voltage of 0.24 V was approximately 5 times higher for the PVA/SA composite containing 2 wt% G-ZnO nanomaterials compared to the neat polymer are obtained. The nanocomposites also demonstrate excellent dielectric constant (22 times higher) values, suggesting the role of the biodegradable thin-film TENGs in various self-powering devices.
    DOI/handle
    http://dx.doi.org/10.1002/ente.202300992
    http://hdl.handle.net/10576/65600
    Collections
    • Center for Advanced Materials Research [‎1551‎ items ]
    • Materials Science & Technology [‎321‎ items ]
    • Mathematics, Statistics & Physics [‎792‎ items ]
    • Mechanical & Industrial Engineering [‎1483‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video