• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Crystallite Size Effects on Electrical Properties of Nickel Chromite (NiCr2O4) Spinel Ceramics: A Study of Structural, Magnetic, and Dielectric Transitions

    Thumbnail
    View/Open
    ChemEngineering-08-00100.pdf (3.086Mb)
    Date
    2024
    Author
    Mamidipalli, Nagarjuna Rao
    Tiyyagura, Papireddy
    Punna Rao, Suryadevara
    Kothamasu, Suresh Babu
    Pothu, Ramyakrishna
    Boddula, Rajender
    Al-Qahtani, Noora ()
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The effect of sintering temperature on the structural, magnetic, and dielectric properties of NiCr2O4 ceramics was investigated. A powder X-ray analysis indicates that the prepared nanocrystallites effectively inhibit the cooperative Jahn–Teller distortion, thereby stabilizing the high-temperature cubic phase structure with space group Fd-3m. Multiple transitions are confirmed by temperature-dependent magnetization M(T) data. Moreover, the magnetization value decreases and the Curie temperature increases with a decrease in the crystallite size. The low-temperature-dependent real permittivity (ε′-T) for a NiCr2O4 crystallite size of 78 nm exhibits a broad maximum at 40 K that is independent of frequency. This establishes a correlation between electric ordering and the underlying magnetic structure. The temperature dependency of the dielectric constant at fixed frequencies for both NiCr2O4 crystallite sizes rises with temperature for a certain range of frequencies. A significant improvement is evident: the dielectric constant (ε’) at room temperature reaches approximately 5738 for the sample with 28 nm crystallites, while the 78 nm crystallite sample shows a noticeable drop to ε’~174. The frequency-dependent conductivity curves for both types of NiCr2O4 nanocrystallites have different conductivity values. The lower-crystallite-size sample demonstrates higher conductivity values than the 78 nm crystallite size one. This observation is attributed to the decrease in crystallite size, which increases the number of grain boundaries and, consequently, scatters a higher number of charge carriers.
    DOI/handle
    http://dx.doi.org/10.3390/chemengineering8050100
    http://hdl.handle.net/10576/65610
    Collections
    • Center for Advanced Materials Research [‎1551‎ items ]
    • Central Laboratories Unit Research [‎124‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video