• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Extreme outage prediction in power systems using a new deep generative Informer model

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0142061525001784-main.pdf (2.942Mb)
    Date
    2025-06-30
    Author
    Rastgoo, Razieh
    Amjady, Nima
    Islam, Syed
    Kamwa, Innocent
    Muyeen, S.M.
    Metadata
    Show full item record
    Abstract
    Extreme weather events have made growing concerns over electric power grid infrastructure as well as the residents living in disaster areas. Moreover, the potential damages due to the extreme events can make serious challenges for supply reliability and security, leading to widespread power outages in power systems. This paper proposes a deep learning-based framework for power data rebalancing and outage prediction in power systems to cope with the extreme events. To this end, we propose an Adaptive Wasserstein Conditional Generative Adversarial Network for data generation. Also, we propose a new Wasserstein Bidirectional Generative Adversarial Network with the Informer model, embedded in both the Generator and Discriminator Networks, plus an Encoder Network for the outage prediction in power systems. Two-step classification approach has been used in the proposed outage prediction model: classifying the power grid components into impacted and non-impacted categories and classifying the impacted category into in-service and out-of-service categories. In addition, a new classification-specific loss function is proposed for the minimax objective function of the Vanilla Generative Adversarial Network to improve the prediction performance in the latent space. Evaluation results of the proposed model and 15 comparative models in three groups using six evaluation metrics on a real-world test case demonstrate the superiority of the proposed model compared to all comparative models. These results confirm that the proposed outage prediction model can be effectively employed for accurately predicting extreme outages in power systems.
    URI
    https://www.sciencedirect.com/science/article/pii/S0142061525001784
    DOI/handle
    http://dx.doi.org/10.1016/j.ijepes.2025.110627
    http://hdl.handle.net/10576/65654
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video