• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Behavioral analytics for optimized self-scheduling in sustainable local multi-carrier energy systems: A prospect theory approach

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S235246772500061X-main.pdf (2.835Mb)
    التاريخ
    2025-06-30
    المؤلف
    Dorahaki, Sobhan
    Muyeen, S.M.
    Amjady, Nima
    Qarnain, Syed Shuibul
    Benbouzid, Mohamed
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The transition towards sustainable energy systems demands innovative solutions to overcome the challenges of integrating diverse energy carriers, fluctuating market dynamics, and operator decision-making complexities. The active involvement of local multi-carrier energy systems (LMCES) as virtual power plants in upstream energy markets is particularly hindered by the limitations of conventional optimization methods, which fail to capture the nuanced behavioral aspects of decision-making. This paper presents a novel prescriptive behavioral analytics framework for LMCES self-scheduling, integrating insights from prospect theory to address the operator’s behavioral tendencies, including loss aversion, subjective risk attitudes, and mental reference points. By embedding these behavioral considerations into a mixed integer linear programming (MILP) model, the proposed approach accounts for real-world decision-making complexities often overlooked in conventional economic theories based on rationality. Comparative analyses demonstrate that the proposed framework not only enhances the modeling of LMCES operators’ decision-making processes but also improves energy scheduling efficiency and supports sustainable energy transitions. The findings provide actionable insights for optimizing LMCES operations, advancing their role in achieving energy sustainability goals.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S235246772500061X
    DOI/handle
    http://dx.doi.org/10.1016/j.segan.2025.101679
    http://hdl.handle.net/10576/65656
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video