• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prolonged Lifespan of Superhydrophobic Thin Films and Coatings Using Recycled Polyethylene

    Thumbnail
    View/Open
    polymers-16-01791-v2.pdf (9.715Mb)
    Date
    2024
    Author
    Saleem, Junaid
    Moghal, Zubair Khalid Baig
    McKay, Gordon
    Metadata
    Show full item record
    Abstract
    High-density polyethylene (HDPE) waste poses a significant environmental challenge due to its non-biodegradable nature and the vast quantities generated annually. However, conventional recycling methods are energy-intensive and often yield low-quality products. Herein, HDPE waste is upcycled into anti-aging, superhydrophobic thin films suitable for outdoor applications. A two-layer spin-casting method combined with heating-induced crosslinking is utilized to produce an exceptionally rough superhydrophobic surface, featuring a root mean square (RMS) roughness of 50 nm, an average crest height of 222 nm, an average trough depth of −264 nm, and a contact angle (CA) of 148°. To assess durability, weathering tests were conducted, revealing the films’ susceptibility to degradation under harsh conditions. The films’ resistance to environmental factors is improved by incorporating a UV absorber, maintaining their hydrophobic properties and mechanical strength. Our research demonstrates a sustainable method for upcycling waste into high-performance, weather-resistant, superhydrophobic films.
    DOI/handle
    http://dx.doi.org/10.3390/polym16131791
    http://hdl.handle.net/10576/66568
    Collections
    • Center for Advanced Materials Research [‎1605‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video