• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Photocatalytic degradation of organic dyes using reduced graphene oxide (rGO)

    Thumbnail
    View/Open
    s41598-024-53626-8.pdf (1.722Mb)
    Date
    2024
    Author
    Shabil Sha, Mizaj
    Anwar, Hayarunnisa
    Musthafa, Farzana N.
    Al-Lohedan, Hamad
    Alfarwati, Sarya
    Rajabathar, Jothi Ramalingam
    Khalid Alahmad, Johaina
    Cabibihan, John-John
    Karnan, Muthusamy
    Kumar Sadasivuni, Kishor
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Photocatalysts have developed into a successful strategy for degrading synthetic and organic toxins, such as chemicals and dyes, in wastewater. In this study, graphene oxide was reduced at different temperatures and used for degrading indigo carmine and neutral red dyes. The wide surface areas, strong adsorption sites, and oxygen functionalities of reduced graphene oxide (rGO) at 250 °C (rGO-250) produced more photocatalytic degradation efficiency and adsorption percentage. The catalyst dosage, initial dye concentration, solution pH and recyclability were all used to optimize the photocatalytic activity of rGO-250. This research presents a capable nano-adsorbent photocatalyst for the efficient degradation of organic dyes. GO and rGOs were also investigated for carbon dioxide (CO2) absorption properties. Results showed that rGO-250 has better CO2 adsorption properties than other rGOs. Overall, it was observed that rGO-250 has better photocatalytic and CO2 adsorption capabilities compared to graphene oxide reduced at different temperatures.
    DOI/handle
    http://dx.doi.org/10.1038/s41598-024-53626-8
    http://hdl.handle.net/10576/66570
    Collections
    • Center for Advanced Materials Research [‎1605‎ items ]
    • Mechanical & Industrial Engineering [‎1503‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video