• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical modeling with experimental verification investigating the effects of nonlinearities on the sideband peak count-index technique and topological acoustic sensing

    Thumbnail
    Date
    2024
    Author
    Zhang, Guangdong
    Hu, Bo
    Alnuaimi, Hamad
    Amjad, Umar
    Deymier, Pierre A.
    Runge, Keith
    Kundu, Tribikram
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    A newly developed nonlinear ultrasonic (NLU) technique called sideband peak count-index (or SPC-I) measures the degree of nonlinearity in materials by counting the sideband peaks above a moving threshold line - larger the SPC-I value, higher is the material nonlinearity. In various published papers, the SPC-I technique has shown its effectiveness in structural health monitoring (SHM) applications. However, the effects of different types of nonlinear phenomenon on the sideband peak generation is yet to be investigated in depth. This work addresses this knowledge gap and investigates the effects of different types of nonlinearity on the SPC-I technique. Three types of nonlinearity (material nonlinearity, structural nonlinearity and contact nonlinearity) are investigated separately through numerical modeling. Numerical modeling results show that the sideband peak values do not increase proportional to the input signal strength thus indicating nonlinear response, and different types of nonlinearities affect the SPC-I measurements differently. For the experimental verification a composite plate with impact-induced damage is considered for investigating the material nonlinearity and structural nonlinearity while a linear elastic aluminum plate is used to examine the contact nonlinearity between the transducers and the plate. The trends observed in the experimental observations matched the numerical model predictions. Monitoring damage growth in topographical structures - formed by inserting different materials in a matrix material is also investigated. In addition to the SPC-I technique an emerging acoustic parameter - "geometric phase change" based on the topological acoustics is also adopted for sensing damage growth in the topographical structures. The performance of SPC-I and topological acoustic sensing techniques as well as the spectral amplitude difference (SAD) parameter for sensing the damage growth in topographical structures are compared and discussed.
    DOI/handle
    http://dx.doi.org/10.1117/12.3010021
    http://hdl.handle.net/10576/66576
    Collections
    • Center for Advanced Materials Research [‎1605‎ items ]
    • Civil and Environmental Engineering [‎871‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video