• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Current trends and future orientation in diagnosing lung pathologies: A systematic survey

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2667102624000664-main.pdf (1.566Mb)
    Date
    2025-02
    Author
    Noorizadeh, Mohammad
    Bensaali, Faycal
    Meskin, Nader
    Ait Hssain, Ali
    Al-Hasan, Tamim M.
    Metadata
    Show full item record
    Abstract
    Lung diseases pose a significant threat to public health worldwide, resulting in a substantial number of fatalities. Diseases such as chronic obstructive pulmonary disease and lung cancer constitute two of the three deadliest diseases worldwide, contributing to over 3 million deaths annually. This study offered a comparative analysis of different diagnostic techniques used for lung pathologies from an engineering standpoint. The review concentrated on intelligent detection methods, including electronic nose, computer vision (CV), or image processing, and biosensors such as graphene-field effect transistor (FET). The E-nose-based detection technique uses electronic sensors to recognize volatile organic compounds (VOCs) in the exhaled breath. These VOCs can aid in the diagnosis of lung pathologies such as pneumonia. The CV processing method involves the application of advanced imaging techniques and machine learning algorithms to scrutinize and diagnose lung pathologies and ventilator-associated pneumonia (VAP). Lastly, biosensors employ the exceptional properties of these materials to identify specific biomarkers in biological samples. This information can be used to diagnose lung pathologies and VAP. This study examined the current state-of-the-art methods and offers a comprehensive analysis of their advantages and disadvantages from an engineering perspective. The study underscored the potential of these techniques to enhance the diagnosis of lung pathologies and VAP and presents the advances in the field of smart biomedical applications. Additionally, it emphasized the necessity for further research to optimize their performance and clinical usefulness.
    URI
    https://www.sciencedirect.com/science/article/pii/S2667102624000664
    DOI/handle
    http://dx.doi.org/10.1016/j.imed.2024.09.004
    http://hdl.handle.net/10576/66690
    Collections
    • Electrical Engineering [‎2848‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video