• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-class subarachnoid hemorrhage severity prediction: addressing challenges in predicting rare outcomes

    عرض / فتح
    s10143-025-03678-9.pdf (2.433Mb)
    التاريخ
    2025-07-10
    المؤلف
    Khan, Muhammad Mohsin
    Chowdhury, Adiba Tabassum
    Sumon, Md Shaheenur Islam
    Maheboob, Shaikh Nissaruddin
    Ali, Arshad
    Thabet, Abdul Nasser
    Al-Rumaihi, Ghaya
    Belkhair, Sirajeddin
    AlSulaiti, Ghanem
    Ayyad, Ali
    Shah, Noman
    Hasan, Anwarul
    Pedersen, Shona
    Chowdhury, Muhammad E.H.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Accurately predicting the severity of subarachnoid hemorrhage (SAH) is critical for informing clinical decisions and improving patient outcomes. This study addresses the challenges of imbalanced data in SAH severity classification by employing the Modified Rankin Scale (MRS) within a three-stage classification framework. We utilize a three-stage approach to effectively categorize SAH severity. In the first stage, we performed binary classification, grouping SAH severity into “Good Outcome” (class 0), which includes MRS levels 0, 1, 2, and 3, and “Poor Outcome” (class 1), encompassing levels 4, 5, and 6. Feature selection was done using a Random Forest algorithm to identify the top 20 features for the SAH severity prediction. We evaluated thirteen machine learning models at each stage, selecting the top-performing classifiers to optimize results. The dataset comprised 535 samples across seven MRS severity levels and was validated using 5-fold cross-validation and diverse subgroups to ensure robust model performance across various scenarios. Binary classification in the first stage achieved approximately 90% accuracy with Extra Trees. In the second stage, targeting the “Good Outcome” group, the Random Forest model reached 88% accuracy, while in the third stage, it achieved 86% accuracy for the “Poor Outcome” group. By increasing accuracy across unbalanced classes and emphasizing its potential for practical use, the multi-stage technique presents a promising solution for predicting the severity of SAH. Future research will concentrate on additional tuning to improve the model’s efficacy in actual healthcare environments.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105010494485&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s10143-025-03678-9
    http://hdl.handle.net/10576/67945
    المجموعات
    • الهندسة الكهربائية [‎2849‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video