عرض بسيط للتسجيلة

المؤلفKhan, Muhammad Mohsin
المؤلفChowdhury, Adiba Tabassum
المؤلفSumon, Md Shaheenur Islam
المؤلفMaheboob, Shaikh Nissaruddin
المؤلفAli, Arshad
المؤلفThabet, Abdul Nasser
المؤلفAl-Rumaihi, Ghaya
المؤلفBelkhair, Sirajeddin
المؤلفAlSulaiti, Ghanem
المؤلفAyyad, Ali
المؤلفShah, Noman
المؤلفHasan, Anwarul
المؤلفPedersen, Shona
المؤلفChowdhury, Muhammad E.H.
تاريخ الإتاحة2025-10-15T07:25:48Z
تاريخ النشر2025-07-10
اسم المنشورNeurosurgical Review
المعرّفhttp://dx.doi.org/10.1007/s10143-025-03678-9
الاقتباسKhan, M. M., Chowdhury, A. T., Sumon, M. S. I., Maheboob, S. N., Ali, A., Thabet, A. N., ... & Chowdhury, M. E. (2025). Multi-class subarachnoid hemorrhage severity prediction: addressing challenges in predicting rare outcomes. Neurosurgical Review, 48(1), 1-15.
الرقم المعياري الدولي للكتاب0344-5607
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105010494485&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/67945
الملخصAccurately predicting the severity of subarachnoid hemorrhage (SAH) is critical for informing clinical decisions and improving patient outcomes. This study addresses the challenges of imbalanced data in SAH severity classification by employing the Modified Rankin Scale (MRS) within a three-stage classification framework. We utilize a three-stage approach to effectively categorize SAH severity. In the first stage, we performed binary classification, grouping SAH severity into “Good Outcome” (class 0), which includes MRS levels 0, 1, 2, and 3, and “Poor Outcome” (class 1), encompassing levels 4, 5, and 6. Feature selection was done using a Random Forest algorithm to identify the top 20 features for the SAH severity prediction. We evaluated thirteen machine learning models at each stage, selecting the top-performing classifiers to optimize results. The dataset comprised 535 samples across seven MRS severity levels and was validated using 5-fold cross-validation and diverse subgroups to ensure robust model performance across various scenarios. Binary classification in the first stage achieved approximately 90% accuracy with Extra Trees. In the second stage, targeting the “Good Outcome” group, the Random Forest model reached 88% accuracy, while in the third stage, it achieved 86% accuracy for the “Poor Outcome” group. By increasing accuracy across unbalanced classes and emphasizing its potential for practical use, the multi-stage technique presents a promising solution for predicting the severity of SAH. Future research will concentrate on additional tuning to improve the model’s efficacy in actual healthcare environments.
راعي المشروعThis work was supported by MRC grant from Hamad Medical Corporation, Doha, Qatar.
اللغةen
الناشرSpringer Nature Link
الموضوعsubarachnoid hemorrhage (SAH)
endovascular therapy (EVT)
العنوانMulti-class subarachnoid hemorrhage severity prediction: addressing challenges in predicting rare outcomes
النوعArticle
الصفحات1-15
رقم العدد1
رقم المجلد48
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة