• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Emerging clay-aryl-gold nanohybrids for efficient electrocatalytic proton reduction

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018-07-15
    Author
    Jlassi, Khouloud
    Zavahir, Sifani
    Kasak, Peter
    Krupa, Igor
    Mohamed, Ahmed A.
    Metadata
    Show full item record
    Abstract
    There is an ever growing demand for renewable sources of energy to replace conventional fossil fuels. One of the alternatives is usage of hydrogen production by electrochemical hydrogen evolution reaction (HER). Toward this end, we have successfully prepared a novel, robust electrocatalyst for HER containing Au nanoparticles dispersed on a natural bentonite using a simple one-pot reduction process. It is one of the most effective ways to minimize Au nanoparticle production cost, stability and usage. Bentonite clay was first modified using two coupling agents (mercaptosilane (MPS) or the diazonium salt of diphenyl aminoaniline (DPA)) to increase interlamellar spacing distance and to provide anchoring sites for the perfluorinated diazonium tetrachloroaurate (III) salt used as a unique source of zero-valent gold nanoparticles dispersed on bentonite surface. Successful intercalation was confirmed by the detection of F1s peak in X-ray photoelectron spectroscopy (XPS) at ∼689 eV, in line with fluorine in CF bonds, and the reduction of gold (III) into metallic gold. Both nanohybrids showed efficient electrochemical activity for HER in acidic condition (0.1 M H2SO4) with high current density up to −25 mA.cm−2 at −1 V and 0.148 mV onset. Negligible decreasing in current density and slight shift in onset was observed after 1000 cycles. The results obtained so far open new avenues for the preparation of low cost, efficient and stable HER catalyst on the one hand, and will contribute to the knowledge of the surface chemistry of the diazonium salts, on the other hand.
    DOI/handle
    http://dx.doi.org/10.1016/j.enconman.2018.04.109
    http://hdl.handle.net/10576/6810
    Collections
    • Center for Advanced Materials Research [‎1522‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video