• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر للنقل والسلامة المرورية
  • السلامة المرورية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر للنقل والسلامة المرورية
  • السلامة المرورية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of Deep Reinforcement Learning in Training Autonomous Vehicles: A bibliometric analysis

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S187705092500835X-main.pdf (1.211Mb)
    التاريخ
    2025-12-31
    المؤلف
    Elnahas, Fatma
    Elshenhabi, Omar
    Muley, Deepti
    Ghanim, Mohammad
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Deep Reinforcement Learning (DRL), a subset of machine learning, combines reinforcement learning with deep learning by using deep neural networks as function. This study assesses the research undertaken for advancement of autonomous vehicles (AVs) using DRL techniques. A bibliometric analysis was conducted using journal papers from Scopus database. A systematic pre-defined screening methodology was applied for selecting the articles. Initial search provided 5964 articles for AVs and DRL. After screening only 401 articles were retained for further investigation indicating only 6.7% relevant articles. The work in this area showed transformative trajectory from 2017 to 2024, characterized by distinct phases of growth. The keywords analysis showed that "reinforcement learning" and "autonomous vehicles" are central with stronger connectivity. The classification of articles in four main categories indicated that most of the articles were related to safety (44%) and traffic efficiency (30%) improvement indicating gap in the literature in other areas. The outcomes of this analysis can lead future research directions.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S187705092500835X
    DOI/handle
    http://dx.doi.org/10.1016/j.procs.2025.03.098
    http://hdl.handle.net/10576/68122
    المجموعات
    • السلامة المرورية [‎208‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video