عرض بسيط للتسجيلة

المؤلفElnahas, Fatma
المؤلفElshenhabi, Omar
المؤلفMuley, Deepti
المؤلفGhanim, Mohammad
تاريخ الإتاحة2025-10-23T06:47:41Z
تاريخ النشر2025-12-31
اسم المنشورProcedia Computer Science
المعرّفhttp://dx.doi.org/10.1016/j.procs.2025.03.098
الاقتباسElnahas, Fatma, Omar Elshenhabi, Deepti Muley, and Mohammad Ghanim. "Application of Deep Reinforcement Learning in Training Autonomous Vehicles: A bibliometric analysis." Procedia Computer Science 257 (2025): 762-768.
الرقم المعياري الدولي للكتاب18770509
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S187705092500835X
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68122
الملخصDeep Reinforcement Learning (DRL), a subset of machine learning, combines reinforcement learning with deep learning by using deep neural networks as function. This study assesses the research undertaken for advancement of autonomous vehicles (AVs) using DRL techniques. A bibliometric analysis was conducted using journal papers from Scopus database. A systematic pre-defined screening methodology was applied for selecting the articles. Initial search provided 5964 articles for AVs and DRL. After screening only 401 articles were retained for further investigation indicating only 6.7% relevant articles. The work in this area showed transformative trajectory from 2017 to 2024, characterized by distinct phases of growth. The keywords analysis showed that "reinforcement learning" and "autonomous vehicles" are central with stronger connectivity. The classification of articles in four main categories indicated that most of the articles were related to safety (44%) and traffic efficiency (30%) improvement indicating gap in the literature in other areas. The outcomes of this analysis can lead future research directions.
اللغةen
الناشرElsevier
الموضوعdeep reinforcement learning
autonomous vehicles
bibliometric analysis
العنوانApplication of Deep Reinforcement Learning in Training Autonomous Vehicles: A bibliometric analysis
النوعConference
الصفحات762-768
رقم المجلد257
Open Access user License http://creativecommons.org/licenses/by/4.0/
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة