• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sustainable E-Health: Energy-Efficient Tiny AI for Epileptic Seizure Detection via EEG.

    Thumbnail
    View/Open
    10.1177_11795972241283101.pdf (1.990Mb)
    Date
    2025-08-10
    Author
    Hizem, Moez
    Aoueileyine, Mohamed Ould-Elhassen
    Belhaouari, Samir Brahim
    El Omri, Abdelfatteh
    Bouallegue, Ridha
    Metadata
    Show full item record
    Abstract
    Tiny Artificial Intelligence (Tiny AI) is transforming resource-constrained embedded systems, particularly in e-health applications, by introducing a shift in Tiny Machine Learning (TinyML) and its integration with the Internet of Things (IoT). Unlike conventional machine learning (ML), which demands substantial processing power, TinyML strategically delegates processing requirements to the cloud infrastructure, allowing lightweight models to run on embedded devices. This study aimed to (i) Develop a TinyML workflow that details the steps for model creation and deployment in resource-constrained environments and (ii) apply the workflow to e-health applications for the real-time detection of epileptic seizures using electroencephalography (EEG) data. The methodology employs a dataset of 4097 EEG recordings per patient, each 23.5 seconds long, from 500 patients, to develop a robust and resilient model. The model was deployed using TinyML on microcontrollers tailored to hardware with limited resources. TensorFlow Lite (TFLite) efficiently runs ML models on small devices, such wearables. Simulation outcomes demonstrated significant performance, particularly in predicting epileptic seizures, with the ExtraTrees Classifier achieving a notable 99.6% Area Under the Curve (AUC) on the validation set. Because of its superior performance, the ExtraTrees Classifier was selected as the preferred model. For the optimized TinyML model, the accuracy remained practically unchanged, whereas inference time was significantly reduced. Additionally, the converted model had a smaller size of 256 KB, approximately ten times smaller, making it suitable for microcontrollers with a capacity of no more than 1 MB. These findings highlight the potential of TinyML to significantly enhance healthcare applications by enabling real-time, energy-efficient decision-making directly on local devices. This is especially valuable in scenarios with limited computing resources or during emergencies, as it reduces latency, ensures privacy, and operates without reliance on cloud infrastructure. Moreover, by reducing the size of training datasets needed, TinyML helps lower overall costs and minimizes the risk of overfitting, making it an even more cost-effective and reliable solution for healthcare innovations.
    DOI/handle
    http://dx.doi.org/10.1177/11795972241283101
    http://hdl.handle.net/10576/68247
    Collections
    • Medicine Research [‎1932‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video