• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biopolyurethane coatings with silica-titania microspheres (MICROSCAFS®) as functional filler for corrosion protection

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0257897224010077-main.pdf (5.435Mb)
    Date
    2024-10-30
    Author
    Silva, Tiago A.R.
    Marques, Ana C.
    A. Shakoor, R
    Montemor, M. Fátima
    Taryba, Maryna
    Metadata
    Show full item record
    Abstract
    In this work, we studied a biopolyurethane (BioPU) coating derived from a bio-based polyol and isocyanate for the protection of carbon steel against corrosion. The direct utilization of polyols obtained from raw biomass represents a novelty in polyurethane coatings production. The protective properties of these coatings were enhanced by incorporating unique silica-titania (ST) MICROSCAFS®, which are microspheres exhibiting interconnected macro- and mesoporosity. They were loaded with tannic acid (TA), an eco-friendly corrosion inhibitor. Confirmation of TA loading into the ST carriers (therefore called ST\TA) was achieved through Attenuated total reflectance - Fourier-transform infrared spectroscopy (ATR-FTIR) and Thermogravimetric (TG) analyses. TG analysis revealed that ST\TA particles contain approximately 34 wt% TA, and their average particle diameter is approximately 25 ± 5 μm, observed by SEM. The TGA shows slightly improved thermal resistance of the coatings modified with the filler MICROSCAFS®. Furthermore, it was observed that the fillers strengthened the coating hardness without negatively affecting the adhesion strength. Electrochemical Impedance Spectroscopy (EIS) results demonstrated that all modified coatings exhibited very good to excellent resistance in mild corrosive environments. The coatings maintained a high impedance modulus (|Z|) at low frequencies and phase angle values close to −90° across a wide frequency range, over an immersion period of 80 days in a 0.05 M NaCl solution. After 80 days of immersion, the best coating, BPU-ST\TA, displayed |Z| of 3 × 1010 Ω cm2. Scanning Vibrating Electrode Technique (SVET) analysis revealed the inhibitory behaviour of TA. For the BPU-ST\TA sample, inhibition of both anodic and cathodic activities was clearly visible, with a significant reduction of the current densities starting at 1 h and up to at least 24 h of immersion. In summary, the BioPU coatings modified with tannic acid-loaded MICROSCAFS® exhibit improved barrier properties and notable corrosion inhibition capacity in mild corrosive environments.
    URI
    https://www.sciencedirect.com/science/article/pii/S0257897224010077
    DOI/handle
    http://dx.doi.org/10.1016/j.surfcoat.2024.131376
    http://hdl.handle.net/10576/68251
    Collections
    • Center for Advanced Materials Research [‎1647‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video