• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transfer Learning Across Heterogeneous Structures Through Adversarial Training

    Thumbnail
    التاريخ
    2025
    المؤلف
    Soleimani-Babakamali, Mohammad Hesam
    Avci, Onur
    Kiranyaz, Serkan
    Taciroglu, Ertugrul
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Transfer learning (TL) methods have become increasingly crucial for the challenges in gathering accurately labeled data from various structures in structural health monitoring (SHM) tasks, such as structural damage detection (SDD). The structures must meet specific similitude criteria for the proposed TL technique's effectiveness in current one-to-one domain approaches. To overcome this challenge, the authors have developed a novel TL method that utilizes raw vibrational features and raw-feature-to-raw-feature domain adaptation (DA) through spectral mapping. This approach offers a generalizable TL strategy that works across vastly different structures. The authors used generative adversarial network (GAN) architecture for the "learning," as it can accommodate high-dimensional inputs in a zero-shot setting. The proposed TL approach was successfully evaluated over three structural health monitoring (SHM) benchmarks. Area under the curve (AUC) of the receiver operating characteristics (ROC) curve resulted in a threshold-bias-free estimation of SDD models retaining as much as 99% of the source model's AUC through its application across different systems with diverse damage-representative data cases.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-031-68142-4_7
    http://hdl.handle.net/10576/68728
    المجموعات
    • الهندسة الكهربائية [‎2871‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video