عرض بسيط للتسجيلة

المؤلفSoleimani-Babakamali, Mohammad Hesam
المؤلفAvci, Onur
المؤلفKiranyaz, Serkan
المؤلفTaciroglu, Ertugrul
تاريخ الإتاحة2025-11-20T10:54:34Z
تاريخ النشر2025
اسم المنشورConference Proceedings of the Society for Experimental Mechanics Series
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/978-3-031-68142-4_7
الاقتباسSoleimani-Babakamali, Mohammad Hesam, Onur Avci, Serkan Kiranyaz, and Ertugrul Taciroglu. "Transfer Learning Across Heterogeneous Structures Through Adversarial Training." In IMAC, A Conference and Exposition on Structural Dynamics, pp. 53-61. Cham: Springer Nature Switzerland, 2024.
الاقتباسen
الترقيم الدولي الموحد للكتاب 978-303168141-7
الرقم المعياري الدولي للكتاب21915644
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68728
الملخصTransfer learning (TL) methods have become increasingly crucial for the challenges in gathering accurately labeled data from various structures in structural health monitoring (SHM) tasks, such as structural damage detection (SDD). The structures must meet specific similitude criteria for the proposed TL technique's effectiveness in current one-to-one domain approaches. To overcome this challenge, the authors have developed a novel TL method that utilizes raw vibrational features and raw-feature-to-raw-feature domain adaptation (DA) through spectral mapping. This approach offers a generalizable TL strategy that works across vastly different structures. The authors used generative adversarial network (GAN) architecture for the "learning," as it can accommodate high-dimensional inputs in a zero-shot setting. The proposed TL approach was successfully evaluated over three structural health monitoring (SHM) benchmarks. Area under the curve (AUC) of the receiver operating characteristics (ROC) curve resulted in a threshold-bias-free estimation of SDD models retaining as much as 99% of the source model's AUC through its application across different systems with diverse damage-representative data cases.
الناشرSpringer
الموضوعDomain adaptation
Generative adversarial networks
Transfer learning
Zero-shot learning
العنوانTransfer Learning Across Heterogeneous Structures Through Adversarial Training
النوعConference
الصفحات53-61
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة