• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hybrid Neural Networks for Precise Hydronephrosis Classification Using Deep Learning

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0090429525007599-main.pdf (2.864Mb)
    Date
    2025-12-31
    Author
    Salam, Abdus
    Naznine, Mansura
    Chowdhury, Muhammad E.H.
    Agzamkhodjaev, Saidanvar
    Tekin, Ali
    Vallasciani, Santiago
    Ramírez-Velázquez, Elias
    Abbas, Tariq O.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    ObjectiveTo develop and evaluate a deep learning framework for automatic kidney and fluid segmentation in renal ultrasound images, aiming to enhance diagnostic accuracy and reduce variability in hydronephrosis assessment. MethodsA dataset of 1731 renal ultrasound images, annotated by four experienced urologists, was used for model training and evaluation. The proposed framework integrates a DenseNet201 backbone, Feature Pyramid Network (FPN), and Self-Organizing Neural Network (SelfONN) layers to enable multi-scale feature extraction and improve spatial precision. Several architectures were tested under identical conditions to ensure a fair comparison. Segmentation performance was assessed using standard metrics, including the Dice coefficient, precision, and recall. The framework also supported hydronephrosis classification using the fluid-to-kidney area ratio, with a threshold of 0.213 derived from prior literature. ResultsThe model achieved strong segmentation performance for kidneys (Dice: 0.92, precision: 0.93, recall: 0.91) and fluid regions (Dice: 0.89, precision: 0.90, recall: 0.88), outperforming baseline methods. The classification accuracy for detecting hydronephrosis reached 94%, based on the computed fluid-to-kidney ratio. Performance was consistent across varied image qualities, reflecting the robustness of the overall architecture. ConclusionThis study presents an automated, objective pipeline for analyzing renal ultrasound images. The proposed framework supports high segmentation accuracy and reliable classification, facilitating standardized and reproducible hydronephrosis assessment. Future work will focus on model optimization and incorporating explainable AI to enhance clinical integration.
    URI
    https://www.sciencedirect.com/science/article/pii/S0090429525007599
    DOI/handle
    http://dx.doi.org/10.1016/j.urology.2025.08.005
    http://hdl.handle.net/10576/69541
    Collections
    • Electrical Engineering [‎2887‎ items ]
    • Medicine Research [‎2051‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video