• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel virtual patient approach for cross-patient multimodal fusion in enhanced breast cancer detection

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S089561112500196X-main.pdf (3.202Mb)
    Date
    2026-12-08
    Author
    Abdullakutty, Faseela
    Al-Maadeed, Somaya
    Saady, Rafif Al
    Bouridane, Ahmed
    Hamoudi, Rifat
    Akbari, Younes
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Multimodal medical imaging combining conventional imaging modalities such as mammography, ultrasound, and histopathology has shown significant promise for improving breast cancer detection accuracy. However, clinical implementation faces substantial challenges due to incomplete patient-matched multimodal datasets and resource constraints. Traditional approaches require complete imaging workups from individual patients, limiting their practical applicability. This study investigates whether cross-patient multimodal fusion combining imaging modalities from different patients, can provide additional diagnostic information beyond single-modality approaches. We hypothesize that leveraging complementary information from heterogeneous patient populations enhances cancer detection performance, even when modalities originate from separate individuals. We developed a novel virtual patient framework that systematically combines imaging modalities across different patients based on quality-driven selection strategies. Two training paradigms were evaluated: Fixed scenario with 1:1:1 cross-patient combinations (∼250 virtual patients), and Combinatorial scenario with systematic companion selection (∼20,000 virtual patients). Multiple fusion architectures (concatenation, attention, and averaging) were assessed, and we designed a novel co-attention mechanism that enables sophisticated cross-modal interaction through learned attention weights. These fusion networks were evaluated using histopathology (BCSS), mammography, and ultrasound (BUSI) datasets. External validation using the ICIAR2018 BACH Challenge dataset as an alternative histopathology source demonstrated the generalizability of our approach, achieving promising accuracy despite differences in staining protocols and acquisition procedures across institutions. All models were evaluated on consistent fixed test sets to ensure fair comparison. This dataset is well-suited for multiple breast cancer analysis tasks, including detection, segmentation, and Explainable Artificial Intelligence (XAI) applications. Cross-patient multimodal fusion demonstrated significant improvements over single-modality approaches. The best single modality achieved 75.36% accuracy (mammography), while the optimal fusion combination (histopathology-mammography) reached 97.10% accuracy, representing a 21.74 percentage point improvement. Comprehensive quantitative validation through silhouette analysis (score: 0.894) confirms that the observed performance improvements reflect genuine feature space structure rather than visualization artifacts. Cross-patient multimodal fusion demonstrates significant potential for enhancing breast cancer detection, particularly addressing real-world scenarios where complete patient-matched multimodal data is unavailable. This approach represents a paradigm shift toward leveraging heterogeneous information sources for improved diagnostic performance.
    URI
    https://www.sciencedirect.com/science/article/pii/S089561112500196X
    DOI/handle
    http://dx.doi.org/10.1016/j.compmedimag.2025.102687
    http://hdl.handle.net/10576/69543
    Collections
    • Computer Science & Engineering [‎2520‎ items ]
    • Medicine Research [‎2051‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video