• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Composition of the immune microenvironment differs between carcinomas metastatic to the lungs and primary lung carcinomas.

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Ann Diagn Pathol 2018.pdf (1.217Mb)
    Date
    2018-04-01
    Author
    Senarathne, Wijendra
    Vranic, Semir
    Xiu, Joanne
    Rose, Inga
    Gates, Peggy
    Gatalica, Zoran
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Lungs are among the most common sites for development of both primary and metastatic carcinomas. Tumor cells expression (TC) of PD-L1 is an important predictor of the of response to immune check-point inhibition in NSCLC, while the composition of the immune cells (IC) in the tumor microenvironment including PD-L1+ cells is believed to predict responses in tumors of some other primary sites. Total mutational load (TML) and microsatellite instability (MSI) also play a role in response to the immune checkpoint blockade. We investigated immune microenvironment characteristics (PD-1, PD-L1, CD8) of 257 lung biopsies including 81 primary (NSCLC) and 176 metastatic tumors to the lungs. TML and MSI were calculated from massively parallel sequencing (592-gene panel). TC expression of PD-L1 was more common in NSCLC than in metastatic carcinomas (28% vs. 10%, p=0.009), while PD-L1-positive IC were present at relevant percentages (1-5%) exclusively in metastatic carcinomas (31% IC positive vs. 0%, p<0.001). Metastatic carcinomas carried significantly lower TML in comparison with the NSCLCs (6.6 mutations on average vs. 10, p=0.01). All primary NSCLC were microsatellite stable, and only 2 metastatic carcinomas exhibited MSI-H status. The number of PD-1+ and CD8+ tumor infiltrating lymphocytes did not differ significantly between the primary and metastatic carcinomas. Our study revealed significant differences in tumor immune microenvironment (PD-L1 in IC and TC), and its relationship to TML between NSCLC and metastatic cancers. These differences could determine the choice of a predictive biomarker test and subsequently effect(s) of the immune therapy treatments in various advanced cancers.
    DOI/handle
    http://dx.doi.org/10.1016/j.anndiagpath.2017.12.004
    http://hdl.handle.net/10576/11465
    Collections
    • Medicine Research [‎1755‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video