• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reinforcement learning-based control of tumor growth under anti-angiogenic therapy.

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019-05-01
    Author
    Yazdjerdi, Parisa
    Meskin, Nader
    Al-Naemi, Mohammad
    Al Moustafa, Ala-Eddin
    Kovács, Levente
    Metadata
    Show full item record
    Abstract
    In recent decades, cancer has become one of the most fatal and destructive diseases which is threatening humans life. Accordingly, different types of cancer treatment are studied with the main aim to have the best treatment with minimum side effects. Anti-angiogenic is a molecular targeted therapy which can be coupled with chemotherapy and radiotherapy. Although this method does not eliminate the whole tumor, but it can keep the tumor size in a given state by preventing the formation of new blood vessels. In this paper, a novel model-free method based on reinforcement learning (RL) framework is used to design a closed-loop control of anti-angiogenic drug dosing administration. A Q-learning algorithm is developed for the drug dosing closed-loop control. This controller is designed using two different values of the maximum drug dosage to reduce the tumor volume up to a desired value. The mathematical model of tumor growth under anti-angiogenic inhibitor is used to simulate a real patient. The effectiveness of the proposed method is shown through in silico simulation and its robustness to patient parameters variation is demonstrated. It is demonstrated that the tumor reaches its minimal volume in 84 days with maximum drug inlet of 30 mg/kg/day. Also, it is shown that the designed controller is robust with respect to  ± 20% of tumor growth parameters changes. The proposed closed-loop reinforcement learning-based controller for cancer treatment using anti-angiogenic inhibitor provides an effective and novel result such that with a clinically valid and safe dosage of drug, the volume reduces up to 1mm in a reasonable short period compared to the literature.
    DOI/handle
    http://dx.doi.org/10.1016/j.cmpb.2019.03.004
    http://hdl.handle.net/10576/12124
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • Medicine Research [‎1756‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video