• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Central Laboratories Unit
  • Central Laboratories Unit Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Central Laboratories Unit
  • Central Laboratories Unit Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Surfactant/organic solvent free single-step engineering of hybrid graphene-Pt/TiO2 nanostructure: Efficient photocatalytic system for the treatment of wastewater coming from textile industries

    Thumbnail
    View/Open
    s41598-018-33108-4.pdf (1.875Mb)
    Date
    2018
    Author
    Ghouri, Zafar Khan
    Elsaid, Khaled
    Abdala, Ahmed
    Al-Meer, Saeed
    Barakat, NasserA. M.
    Metadata
    Show full item record
    Abstract
    In this study, hybrid graphene-Pt/TiO2 nanostructure were synthesized by single-step, inexpensive and surfactant/organic solvent free route; hydrothermal technique. The physicochemical properties of hybrid graphene-Pt/TiO2 nanostructure were carefully analyzed by multiple techniques, including X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The synthesized hybrid nanostructures were utilized as photocatalyst for the degradation of methylene blue (MB) dye under natural environment at average ambient temperature and mean daily global solar radiation, of about 22–25 °C and 374.9 mWh/cm2, respectively. The activity performance indicated considerable degradation of methylene blue (MB) dye and was in the following order Gr (13%), TiO2 (60%) and hybrid graphene-Pt/TiO2 nanostructure (90%) over 21 min under the natural light illumination. The physiochemical characterization suggests that, the tightly attached metalized TiO2 nanoparticles (Pt-TiO2) on the high surface area graphene sheets improved utilization of visible light and increased separation and transfer of photo-excited electron (ē) hole (h+) pairs. Notably, the hybrid graphene-Pt/TiO2 nanostructure exhibited an excellent cyclic stability for methylene blue (MB) dye removal. Finally, the kinetic behavior indicated that the photocatalytic degradation reaction of the dye obeyed the pseudo-first order (Langmuir-Hinshelwood) kinetics model.
    DOI/handle
    http://dx.doi.org/10.1038/s41598-018-33108-4
    http://hdl.handle.net/10576/12198
    Collections
    • Central Laboratories Unit Research [‎113‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video