• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design of hybrid clay/ polypyrrole decorated with silver and zinc oxide nanoparticles for anticorrosive and antibacterial applications

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Design hyprid.pdf (6.292Mb)
    Date
    2020-12-31
    Author
    Khouloud, Jlassi
    Sliem, Mostafa H.
    Benslimane, Fatiha M.
    Eltai, Nahla O.
    Abdullah, Aboubakr M.
    Metadata
    Show full item record
    Abstract
    In this work, a novel and cost-effective bentonite intercalated with polypyrrole Zinc oxide-silver nanocomposite (B-PPy/ZnO) hybrid material was prepared via in situ photopolymerization of pyrrole in the presence of silanized bentonite and zinc oxide nanoparticles and using silver nitrate as an initiator. The as-prepared Bentonite-polypyrrole/ZnO hybrid material was found to be black, exfoliated with a polypyrrole-rich surface decorated with ZnO and silver nanoparticles in a metallic state. We evaluated the propensity of the prepared hybrid material as an eco-friendly, anticorrosive, and antibacterial coating for carbon steel. The corrosion resistance efficiency study of B-PPy/ZnO composite incorporated with the epoxy matrix was carried out in a 3.5 % NaCl solution. B-PPy/ZnO 4 wt% composite coating on carbon steel was observed to exhibit best corrosion protection property, with High charge transfer resistance were value (9.85 MΩ cm−2) compared to 0.213 MΩ cm-2 in the presence of pure epoxy. Cytotoxicity assay was carried out on an A549 epithelial cell line. Moreover, B-PPy/ZnO showed a reduction in Escherichia coli bacterial growth by ∼86 % with a minimum inhibitory concentration of 0.03 mg ml-1. The results obtained herein will open new routes to the preparation of efficient ecofriendly anticorrosion and antibacterial coatings.
    URI
    https://www.sciencedirect.com/science/article/pii/S0300944020311292
    DOI/handle
    http://dx.doi.org/10.1016/j.porgcoat.2020.105918
    http://hdl.handle.net/10576/16092
    Collections
    • Biomedical Research Center Research [‎808‎ items ]
    • Center for Advanced Materials Research [‎1564‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video