• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Laplace approximation, penalized quasi-likelihood, and adaptive Gauss-Hermite quadrature for generalized linear mixed models: Towards meta-analysis of binary outcome with sparse data

    Thumbnail
    View/Open
    Main article (2.486Mb)
    Date
    2020-06-11
    Author
    Ju, Ke
    Lin, Lifeng
    Chu, Haitao
    Cheng, Liang Liang
    Xu, Chang
    Metadata
    Show full item record
    Abstract
    © 2020 The Author(s). Background: In meta-analyses of a binary outcome, double zero events in some studies cause a critical methodology problem. The generalized linear mixed model (GLMM) has been proposed as a valid statistical tool for pooling such data. Three parameter estimation methods, including the Laplace approximation (LA), penalized quasi-likelihood (PQL) and adaptive Gauss-Hermite quadrature (AGHQ) were frequently used in the GLMM. However, the performance of GLMM via these estimation methods is unclear in meta-analysis with zero events. Methods: A simulation study was conducted to compare the performance. We fitted five random-effects GLMMs and estimated the results through the LA, PQL and AGHQ methods, respectively. Each scenario conducted 20,000 simulation iterations. The data from Cochrane Database of Systematic Reviews were collected to form the simulation settings. The estimation methods were compared in terms of the convergence rate, bias, mean square error, and coverage probability. Results: Our results suggested that when the total events were insufficient in either of the arms, the GLMMs did not show good point estimation to pool studies of rare events. The AGHQ method did not show better properties than the LA estimation in terms of convergence rate, bias, coverage, and possibility to produce very large odds ratios. In addition, although the PQL had some advantages, it was not the preferred option due to its low convergence rate in some situations, and the suboptimal point and variance estimation compared to the LA. Conclusion: The GLMM is an alternative for meta-analysis of rare events and is especially useful in the presence of zero-events studies, while at least 10 total events in both arms is recommended when employing GLMM for meta-analysis. The penalized quasi-likelihood and adaptive Gauss-Hermite quadrature are not superior to the Laplace approximation for rare events and thus they are not recommended.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086620524&origin=inward
    DOI/handle
    http://dx.doi.org/10.1186/s12874-020-01035-6
    http://hdl.handle.net/10576/17567
    Collections
    • Medicine Research [‎1755‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video