• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Methodological assessment of systematic reviews and meta-analyses on COVID-19: A meta-epidemiological study

    Thumbnail
    View/Open
    JEP-9999-0.pdf (1.160Mb)
    Date
    2021-01-01
    Author
    Rosenberger, Kristine J.
    Xu, Chang
    Lin, Lifeng
    Metadata
    Show full item record
    Abstract
    Rationale, aims, and objectives: COVID-19 has caused an ongoing public health crisis. Many systematic reviews and meta-analyses have been performed to synthesize evidence for better understanding this new disease. However, some concerns have been raised about rapid COVID-19 research. This meta-epidemiological study aims to methodologically assess the current systematic reviews and meta-analyses on COVID-19. Methods: We searched in various databases for systematic reviews with meta-analyses published between 1 January 2020 and 31 October 2020. We extracted their basic characteristics, data analyses, evidence appraisal, and assessment of publication bias and heterogeneity. Results: We identified 295 systematic reviews on COVID-19. The median time from submission to acceptance was 33 days. Among these systematic reviews, 73.9% evaluated clinical manifestations or comorbidities of COVID-19. Stata was the most used software programme (43.39%). The odds ratio was the most used effect measure (34.24%). Moreover, 28.14% of the systematic reviews did not present evidence appraisal. Among those reporting the risk of bias results, 14.64% of studies had a high risk of bias. Egger's test was the most used method for assessing publication bias (38.31%), while 38.66% of the systematic reviews did not assess publication bias. The I2 statistic was widely used for assessing heterogeneity (92.20%); many meta-analyses had high values of I2. Among the meta-analyses using the random-effects model, 75.82% did not report the methods for model implementation; among those meta-analyses reporting implementation methods, the DerSimonian-Laird method was the most used one. Conclusions: The current systematic reviews and meta-analyses on COVID-19 might suffer from low transparency, high heterogeneity, and suboptimal statistical methods. It is recommended that future systematic reviews on COVID-19 strictly follow well-developed guidelines. Sensitivity analyses may be performed to examine how the synthesized evidence might depend on different methods for appraising evidence, assessing publication bias, and implementing meta-analysis models.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85105163198&origin=inward
    DOI/handle
    http://dx.doi.org/10.1111/jep.13578
    http://hdl.handle.net/10576/21404
    Collections
    • COVID-19 Research [‎848‎ items ]
    • Medicine Research [‎1739‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video