• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 1: Energy and Environment
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 1: Energy and Environment
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Gearless Powertrain for Electric Vehicles

    Thumbnail
    View/Open
    149.pdf (884.9Kb)
    Date
    2021
    Author
    IQBAL, ATIF
    Reddy, Prathap
    Meraj, Mohammed
    Metadata
    Show full item record
    Abstract
    Electrical Machines are driving the modern world in one way or the other. The modern world is moving towards the sustainability of ecological systems and greener modes of transportation to stabilize the environmental conditions for future generations. For this, the multiphase machines have risen as efficient solutions over traditional 3-phase electrical machines. In this project, a Pole Phase Modulated (PPM) multiphase induction motor drive is developed for gearless electric vehicle applications. With the help of conventional pole changing techniques (like using multiple auxiliary windings or dual stator windings) variable speed and torques can be achieved but the poor copper utilization, de-energization of the windings, and multiple auxiliary windings are the major limitations. In this project, a novel single stator winding multiphase induction motor is developed that is capable of delivering variable speed-torques by varying the number of phases as well as poles simultaneously using novel multiphase power converter topologies. Moreover, the proposed drive offers high fault-tolerant capability, the ability to handle high power with reduced voltage ratings of power electronic devices, better torque/power distribution, and improved efficiency with a lesser magnitude of space harmonics, etc. The proposed drive gives similar speed torque characteristics of conventional IC-based conventional vehicles, which helps in the elimination of the gearbox system in the EVs. This minimizes the cost, size, weight, and volume of the vehicle. Two-level inverters and multilevel inverters with carrier phase shifted space vector PWM are developed for achieving the better performance of the PPM-based MIM drive w.r.t. efficiency, torque ripple and DC link utilization. Fault-tolerant operation of the drive with respect to inverter switch or source failures is also developed as a part of the project and presented. To operate the PPM-based MIM drive smoothly in different pole phase combinations, the indirect field-oriented vector control is developed and presented.
    URI
    https://doi.org/10.29117/quarfe.2021.0006
    DOI/handle
    http://hdl.handle.net/10576/24273
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • Theme 1: Energy and Environment [‎73‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video