• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 2: Health and Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 2: Health and Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development and In Vivo Testing of Smart Nanoparticles for Enhanced Anti-Cancer Activity and Reduced Cardiotoxicity Associated with Tyrosine Kinase Inhibitors

    Thumbnail
    View/Open
    273.pdf (1.866Mb)
    Date
    2021
    Author
    Yalcin, Huseyin
    Al-Thani, Hissa
    Shurbaji, Samar
    Metadata
    Show full item record
    Abstract
    Tyrosine kinase inhibitors (TKIs) are new generation of anti-cancer drugs with very high efficiency against cancer cells. However, TKIs are associated with severe cardiotoxicity limiting their clinical benefits. One TKI that has been developed recently but not explored much is Ponatinib. The use of nanoparticles as a better therapeutic agent to deliver anti-cancer drugs and reduce their cardiotoxicity has been recently considered. In this study, PLGA-PEG-PLGA nanoparticles were synthesized to deliver Ponatinib while reducing its cardiotoxicity for treatment of chronic myeloid leukemia. Shape, size, surface charge and drug uptake ability of these nanoparticles were assessed using transmission electron microscopy (TEM), ZetaSIZER NANO and high-performance liquid chromatography (HPLC). Cardiotoxicity of Ponatinib, unloaded and loaded PLGA-PEG-PLGA nanoparticles were studied on zebrafish model through measuring the survival rate and cardiac function parameters, to optimize efficient drug concentrations in an in vivo setting. These particles were tested on zebrafish cancer xenograft model in which, K562 cell line, was transplanted into zebrafish embryos. We showed that, at an optimal concentration (0.0025mg/ml), Ponatinib loaded PLGA-PEG-PLGA particles are non-toxic/non-cardio-toxic and are very efficient against cancer growth and metastasis. Zebrafish is a good animal model for investigating the cardiotoxicity associated with the anti-cancer drugs such as TKIs, to determine the optimum concentration of smart nanoparticles with the least side effects and to generate xenograft model of several cancer types. Also, PLGA-PEG-PLGA NPs could be good candidate for CML treatment, but their cellular internalization should be enhanced. This could be achieved by coating and labeling the surface of PLGA-PEG-PLGA NPs with specific ligands that are unique to CML cells.
    URI
    https://doi.org/10.29117/quarfe.2021.0088
    DOI/handle
    http://hdl.handle.net/10576/24373
    Collections
    • Biomedical Research Center Research [‎787‎ items ]
    • Biomedical Sciences [‎802‎ items ]
    • Theme 2: Health and Biomedical Sciences [‎80‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video