• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance Comparison of Learned vs. Engineered Features for Polarimetric SAR Terrain Classification

    Thumbnail
    التاريخ
    2019
    المؤلف
    Ahishali M.
    Ince T.
    Kiranyaz, Mustafa Serkan
    Gabbouj M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In this work, we propose to use learned features for terrain classification of Polarimetric Synthetic Aperture Radar (PolSAR) images. In the proposed classification framework, the learned features are extracted from sliding window regions using Convolutional Neural Networks (CNNs), and then they are used for the classification with the linear Support Vector Machine (SVM) classifier. The classification performance of the proposed approach is compared with numerous target decomposition theorems (TDs) as the engineered features tested with two classifiers: Collective Network of Binary Classifiers (CNBCs) and SVMs. The experimental evaluations over two commonly used benchmark AIRSAR PolSAR images, San Francisco Bay and Flevoland at L- Band, reveal that the classification performance of the learned features with CNNs outperforms the performance of the engineered features as TDs even the dimension of learned features is the quarter of the engineered features.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082018376&doi=10.1109%2fPIERS-Spring46901.2019.9017716&partnerID=40&md5=5fc0508601d861dd8da665a7440e21ad
    DOI/handle
    http://dx.doi.org/10.1109/PIERS-Spring46901.2019.9017716
    http://hdl.handle.net/10576/30620
    المجموعات
    • الهندسة الكهربائية [‎2849‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      Multifrequency Polsar Image Classification Using Dual-Band 1D Convolutional Neural Networks 

      Ahishali M.; Kiranyaz, Mustafa Serkan; Ince T.; Gabbouj M. ( Institute of Electrical and Electronics Engineers Inc. , 2020 , Conference)
      In this work, we propose a novel classification approach based on dual-band one-dimensional Convolutional Neural Networks (1D-CNNs) for classification of multifrequency polarimetric SAR (PolSAR) data. The proposed approach ...
    • Thumbnail

      Bayesian network based heuristic for energy aware EEG signal classification 

      Mohamed A.; Shaban K.B.; Mohamed A. ( SpringerLink , 2013 , Conference)
      A major challenge in the current research of wireless electroencephalograph (EEG) sensor-based medical or Brain Computer Interface applications is how to classify EEG signals as accurately and energy efficient as possible. ...
    • Thumbnail

      Convolutional Sparse Support Estimator-Based COVID-19 Recognition from X-Ray Images 

      Yamac M.; Ahishali M.; Degerli A.; Kiranyaz, Mustafa Serkan; Chowdhury M.E.H.; Gabbouj M.... more authors ... less authors ( Institute of Electrical and Electronics Engineers Inc. , 2021 , Article)
      Coronavirus disease (COVID-19) has been the main agenda of the whole world ever since it came into sight. X-ray imaging is a common and easily accessible tool that has great potential for COVID-19 diagnosis and prognosis. ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video