• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Warfarin-Rifampin-Gene (WARIF-G) Interaction: A Retrospective, Genetic, Case–Control Study

    Thumbnail
    Date
    2023-02-15
    Author
    Salem, Muhammad
    El-Bardissy, Ahmed
    Elshafei, Mohamed Nabil
    Khalil, Ahmed
    Mahmoud, Hesham
    Fahmi, Amr Mohamed
    Kasem, Mohamed
    Bader, Loulia
    Sherbash, Mohamed
    Elawady, Mostafa Ibrahim
    Abdalazim, Walaa
    Howady, Faraj
    Elewa, Hazem
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Warfarin is extensively metabolized by cytochrome P450 2C9 (CYP2C9). Concomitant use with the potent CYP2C9 inducer, rifampin, requires close monitoring and dosage adjustments. Although, in theory, warfarin dose increase should overcome this interaction, most reported cases over the last 50 years have not responded even to high warfarin doses, but some have responded to modest doses. To investigate the genetic polymorphisms' impact on this unexplained interpatient variability, we performed genotyping of CYP2C9, VKORC1, and CYP4F2 for warfarin and rifampin concomitant receivers from 2016 to 2022 at Hamad Medical Corporation, Doha, Qatar. We identified and included 36 patients: 22 responders and 14 nonresponders. Warfarin-responders were significantly more likely to have one or more warfarin-sensitizing CYP2C9/VKORC1 alleles than nonresponders (odds ratio = 23.2, 95% confidence interval = 3.2–195.6; P = 0.0001). The mean genetic-based pre-interaction calculated dose was significantly lower for responders than for nonresponders (P < 0.001); and was negatively correlated with warfarin sensitivity index (WSI) (r = −0.58; P = 0.0002). The median percentage time in therapeutic range and mean WSI were significantly higher in the warfarin-sensitizing CYP2C9/VKORC1 alleles carriers than noncarriers (P = 0.017 and 0.0004, respectively). Whereas the warfarin-sensitizing CYP2C9/VKORC1 genotypes were associated with modest on-rifampin warfarin dose requirements, the noncarriers would have required more than double these doses to respond. Warfarin-sensitizing CYP2C9/VKORC1 genotypes and low genetic-based warfarin calculated doses were associated with higher warfarin sensitivity and better anticoagulation quality in patients receiving rifampin concomitantly.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85149880825&origin=inward
    DOI/handle
    http://dx.doi.org/10.1002/cpt.2871
    http://hdl.handle.net/10576/42214
    Collections
    • Pharmacy Research [‎1389‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video