• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Role of Graphene Oxide in Bacterial Cellulose−Gelatin Hydrogels for Wound Dressing Applications

    Thumbnail
    View/Open
    acsomega.2c07279.pdf (12.80Mb)
    Date
    2022
    Author
    Khan, Muhammad Umar Aslam
    Stojanović, Goran M.
    Hassan, Rozita
    Anand, T. Joseph Sahaya
    Al-Ejji, Maryam
    Hasan, Anwarul
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Biopolymer-based hydrogels have several advantages, including robust mechanical, high biocompatibility, and excellent properties. These hydrogels can be ideal wound dressing materials and advantageous to repair and regenerate skin wounds. In this work, we have reported fabricated of composite hydrogels from gelatin and graphene oxide-functionalized-bacterial cellulose (synthesized by hydrothermal method) (GO-f-BC) and crosslinked with tetraethyl orthosilicate (TEOS). The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and water contact angle analyses to explore functional groups and their interactions, surface morphology, and wetting behavior, respectively. The swelling, biodegradation, and water retention were tested to respond to biofluid. Maximum swelling was exhibited by samle with maximum amount of GO (GBG-4) in all media (aqueous = 1902.83%, PBS = 1546.63%, and electrolyte = 1367.32%). The hemolysis of all hydrogel samples is less than 0.5%, and the blood coagulation time decreased as the hydrogel concentration increased. The composite hydrogels were found to be hemocompatible as they have less than 0.5% hemolysis for all hydrogel samples under in vitro standard conditions. These hydrogels performed unusual antimicrobial activities against Gram (positive and negative) bacterial strains. The cell viability and proliferation were increased with an increased GO amount, and maximum values were found for GBG-4 against fibroblast (3T3) cell lines. The mature and well-adhered cell morphology of 3T3 cells was found against all hydrogel samples. Hence, based on these results findings, these hydrogels would be potential wound dressing skin materials for wound healing applications.
    DOI/handle
    http://dx.doi.org/10.1021/acsomega.2c07279
    http://hdl.handle.net/10576/44234
    Collections
    • Biomedical Research Center Research [‎785‎ items ]
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video