• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Central Laboratories Unit
  • Central Laboratories Unit Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Central Laboratories Unit
  • Central Laboratories Unit Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Engineering of magnetically separable ZnFe2O4@ TiO2 nanofibers for dye-sensitized solar cells and removal of pollutant from water

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    pagination_JALCOM_42280.pdf (1.875Mb)
    Date
    2017-06-21
    Author
    Al-Meer, Saeed
    Ghouri, Zafar Khan
    Elsaid, Khaled
    Easa, Ahmed
    Al-Qahtani, Muneera Th.
    Shaheer Akhtar, M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Abstract In this study, magnetic Zinc Ferrite (ZnFe2O4)@TiO2 nanofibers were prepared by low cost and nontoxic route; hydrothermal technique followed by electrospinning process. The prepared magnetic ZnFe2O4@TiO2 nanofibers were morphologically and structurally analyzed by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), and thermal gravimetric analysis (TGA). The prepared magnetic ZnFe2O4@TiO2 nanofibers were utilized as photoanode for the fabrication of dye-sensitized solar cells (DSSCs) and presented applicable performance with 4.2% overall conversion efficiency with high short circuit current density (JSC) of 10.16 mA/cm2. The maximum ∼42% incident photo-to-current conversion efficiency (IPCE) value was also recorded at 520 nm. In addition, ZnFe2O4@TiO2 nanofibers were not only possessed the good conversion efficiency, but also shown excellent photocatalytic efficiency with magnetic properties towards the dye remediation. Prepared ZnFe2O4@TiO2 nanofibers can be considered as a promising material for energy conversion and environmental applications.
    URI
    http://www.sciencedirect.com/science/article/pii/S0925838817322107
    DOI/handle
    http://dx.doi.org/10.1016/j.jallcom.2017.06.211
    http://hdl.handle.net/10576/5611
    Collections
    • Central Laboratories Unit Research [‎113‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video