• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Central Laboratories Unit
  • Central Laboratories Unit Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Central Laboratories Unit
  • Central Laboratories Unit Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In-vivo pharmacokinetic study of ibrutinib-loaded nanostructured lipid carriers in rat plasma by sensitive spectrofluorimetric method using harmonized approach of quality by design and white analytical chemistry

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1386142524008977-main.pdf (6.421Mb)
    Date
    2024-11-15
    Author
    Pintu, Prajapati
    Patel, Anjali
    Desai, Aneri
    Shah, Pranav
    Pulusu, Veera Shakar
    Haque, Anzarul
    Kalam, Mohd Abul
    Shah, Shailesh
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Ibrutinib, an antineoplastic agent tackling chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom’s Macroglobulinemia, falls under the category of BCS class II drugs, characterized by a puzzling combination of low solubility and high permeability. Its oral bioavailability remains a perplexing challenge, merely reaching 2.9 % due to formidable first-pass metabolism hurdles. In a bid to surmount this obstacle, researchers embarked on a journey to develop ibrutinib-loaded NLCs (Nanostructured Lipid Carriers) using a methodology steeped in complexity: a Design of Experiments (DoE)-based hot melted ultrasonication approach. Despite a plethora of methods for analyzing ibrutinib in various matrices, the absence of a spectrofluorimetric method for assessing it in rat plasma added to the enigma. Thus emerged a spectrofluorimetric method, embodying principles of white analytical chemistry and analytical quality by design, employing a Placket-Burman design for initial method exploration and a central composite design for subsequent refinement. This method underwent rigorous validation in accordance with ICH guidelines, paving the way for its application in scrutinizing the in-vivo pharmacokinetics of ibrutinib-loaded NLCs, juxtaposed against commercially available formulations. Surprisingly, the optimized NLCs exhibited a striking 1.82-fold boost in oral bioavailability, shedding light on their potential efficacy. The environmental impact of this method was scrutinized using analytical greenness tools, affirming its eco-friendly attributes. In essence, the culmination of these efforts has not only propelled advancements in drug bioavailability but also heralded the dawn of a streamlined and environmentally conscious analytical paradigm.
    URI
    https://www.sciencedirect.com/science/article/pii/S1386142524008977
    DOI/handle
    http://dx.doi.org/10.1016/j.saa.2024.124731
    http://hdl.handle.net/10576/58778
    Collections
    • Central Laboratories Unit Research [‎113‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video