Precision classification and quantitative analysis of bacteria biomarkers via surface-enhanced Raman spectroscopy and machine learning
Author | Kumar, Amit |
Author | Islam, Md Redwan |
Author | Zughaier, Susu M. |
Author | Chen, Xianyan |
Author | Zhao, Yiping |
Available date | 2024-09-23T06:45:20Z |
Publication Date | 2024 |
Publication Name | Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
Resource | Scopus |
ISSN | 13861425 |
Abstract | The SERS spectra of six bacterial biomarkers, 2,3-DHBA, 2,5-DHBA, Pyocyanin, lipoteichoic acid (LTA), Enterobactin, and β-carotene, of various concentrations, were obtained from silver nanorod array substrates, and the spectral peaks and the corresponding vibrational modes were identified to classify different spectra. The spectral variations in three different concentration regions due to various reasons have imposed a challenge to use classic calibration curve methods to quantify the concentration of biomarkers. Depending on baseline removal strategy, i.e., local or global baseline removal, the calibration curve differed significantly. With the aid of convolutional neural network (CNN), a two-step process was established to classify and quantify biomarker solutions based on SERS spectra: using a specific CNN model, a remarkable differentiation and classification accuracy of 99.99 % for all six biomarkers regardless of the concentration can be achieved. After classification, six regression CNN models were established to predict the concentration of biomarkers, with coefficient of determination R2 > 0.97 and mean absolute error (MAE) < 0.27. The feature of important calculations indicates the high classification and quantification accuracies were due to the intrinsic spectral features in SERS spectra. This study showcases the synergistic potential of SERS and advanced machine learning algorithms and holds significant promise for bacterial infection diagnostics. |
Sponsor | A.K., S.Z., and Y.Z. were partially funded by Qatar National Research Fund Grant number NPRP12S-0224-190144 , and A.K, R.I., X.C., and Y.Z. are funded by the USDA NIFA Grant number 2023-67015-39237 . |
Language | en |
Publisher | Elsevier |
Subject | Biomarkers Machine learning Silver nanorod array Surface enhanced Raman scattering (SERS) |
Type | Article |
Volume Number | 320 |
Check access options
Files in this item
This item appears in the following Collection(s)
-
Medicine Research [1537 items ]