• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Constraints Separation Based Evolutionary Multitasking for Constrained Multi-Objective Optimization Problems

    عرض / فتح
    Constraints_Separation_Based_Evolutionary_Multitasking_for_Constrained_Multi-Objective_Optimization_Problems.pdf (2.222Mb)
    التاريخ
    2024
    المؤلف
    Qiao, Kangjia
    Liang, Jing
    Yu, Kunjie
    Ban, Xuanxuan
    Yue, Caitong
    Qu, Boyang
    Suganthan, Ponnuthurai Nagaratnam
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Constrained multi-objective optimization problems (CMOPs) generally contain multiple constraints, which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions, thus they propose serious challenges for solvers. Among all constraints, some constraints are highly correlated with optimal feasible regions; thus they can provide effective help to find feasible Pareto front. However, most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints, and do not consider judging the relations among constraints and do not utilize the information from promising single constraints. Therefore, this paper attempts to identify promising single constraints and utilize them to help solve CMOPs. To be specific, a CMOP is transformed into a multi-tasking optimization problem, where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively. Besides, an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships. Moreover, an improved tentative method is designed to find and transfer useful knowledge among tasks. Experimental results on three benchmark test suites and 11 real-world problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.
    DOI/handle
    http://dx.doi.org/10.1109/JAS.2024.124545
    http://hdl.handle.net/10576/62256
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video