• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Constraints Separation Based Evolutionary Multitasking for Constrained Multi-Objective Optimization Problems

    View/Open
    Constraints_Separation_Based_Evolutionary_Multitasking_for_Constrained_Multi-Objective_Optimization_Problems.pdf (2.222Mb)
    Date
    2024
    Author
    Qiao, Kangjia
    Liang, Jing
    Yu, Kunjie
    Ban, Xuanxuan
    Yue, Caitong
    Qu, Boyang
    Suganthan, Ponnuthurai Nagaratnam
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Constrained multi-objective optimization problems (CMOPs) generally contain multiple constraints, which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions, thus they propose serious challenges for solvers. Among all constraints, some constraints are highly correlated with optimal feasible regions; thus they can provide effective help to find feasible Pareto front. However, most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints, and do not consider judging the relations among constraints and do not utilize the information from promising single constraints. Therefore, this paper attempts to identify promising single constraints and utilize them to help solve CMOPs. To be specific, a CMOP is transformed into a multi-tasking optimization problem, where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively. Besides, an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships. Moreover, an improved tentative method is designed to find and transfer useful knowledge among tasks. Experimental results on three benchmark test suites and 11 real-world problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.
    DOI/handle
    http://dx.doi.org/10.1109/JAS.2024.124545
    http://hdl.handle.net/10576/62256
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video